119 research outputs found

    Phenotypic Variation and Bistable Switching in Bacteria

    Get PDF
    Microbial research generally focuses on clonal populations. However, bacterial cells with identical genotypes frequently display different phenotypes under identical conditions. This microbial cell individuality is receiving increasing attention in the literature because of its impact on cellular differentiation, survival under selective conditions, and the interaction of pathogens with their hosts. It is becoming clear that stochasticity in gene expression in conjunction with the architecture of the gene network that underlies the cellular processes can generate phenotypic variation. An important regulatory mechanism is the so-called positive feedback, in which a system reinforces its own response, for instance by stimulating the production of an activator. Bistability is an interesting and relevant phenomenon, in which two distinct subpopulations of cells showing discrete levels of gene expression coexist in a single culture. In this chapter, we address techniques and approaches used to establish phenotypic variation, and relate three well-characterized examples of bistability to the molecular mechanisms that govern these processes, with a focus on positive feedback.

    Introduction: reconsidering the region in India: mobilities, actors and development politics

    Get PDF
    In this introduction to a special issue on ‘Reconsidering the Region in India’, we aim to develop a synthetic and theoretically nuanced account of the multifarious ways in which the idea of region has been imbricated in diverse spatial, political, cultural and socio-economic configurations. We draw from various bodies of anthropological, geographic and historical literature to elaborate on three themes that we believe are central to understanding contemporary processes of region-making in India: trans-regional mobilities and connections; the actors who produce and perform regional imaginaries; and changing regional politics of development.IS

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    Background: Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. Findings: Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79). Interpretation: In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Background: In this study, we aimed to evaluate the effects of tocilizumab in adult patients admitted to hospital with COVID-19 with both hypoxia and systemic inflammation. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. Those trial participants with hypoxia (oxygen saturation <92% on air or requiring oxygen therapy) and evidence of systemic inflammation (C-reactive protein ≥75 mg/L) were eligible for random assignment in a 1:1 ratio to usual standard of care alone versus usual standard of care plus tocilizumab at a dose of 400 mg–800 mg (depending on weight) given intravenously. A second dose could be given 12–24 h later if the patient's condition had not improved. The primary outcome was 28-day mortality, assessed in the intention-to-treat population. The trial is registered with ISRCTN (50189673) and ClinicalTrials.gov (NCT04381936). Findings: Between April 23, 2020, and Jan 24, 2021, 4116 adults of 21 550 patients enrolled into the RECOVERY trial were included in the assessment of tocilizumab, including 3385 (82%) patients receiving systemic corticosteroids. Overall, 621 (31%) of the 2022 patients allocated tocilizumab and 729 (35%) of the 2094 patients allocated to usual care died within 28 days (rate ratio 0·85; 95% CI 0·76–0·94; p=0·0028). Consistent results were seen in all prespecified subgroups of patients, including those receiving systemic corticosteroids. Patients allocated to tocilizumab were more likely to be discharged from hospital within 28 days (57% vs 50%; rate ratio 1·22; 1·12–1·33; p<0·0001). Among those not receiving invasive mechanical ventilation at baseline, patients allocated tocilizumab were less likely to reach the composite endpoint of invasive mechanical ventilation or death (35% vs 42%; risk ratio 0·84; 95% CI 0·77–0·92; p<0·0001). Interpretation: In hospitalised COVID-19 patients with hypoxia and systemic inflammation, tocilizumab improved survival and other clinical outcomes. These benefits were seen regardless of the amount of respiratory support and were additional to the benefits of systemic corticosteroids. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    An elasticity microscope for high-resolution imaging of tissue stiffness using 50 MHz ultrasound.

    Full text link
    An elasticity microscope images tissue stiffness at fine resolution. Possible applications include dermatology, ophthalmology, pathology and tissue engineering. If the resolution approaches cellular dimensions, then this system may be useful in understanding tissue micromorphology. Elasticity images are reconstructed from displacement and strain fields measured throughout the specimen during controlled external loading. Methods are presented to utilize high frequency ultrasonic imaging for elasticity microscopy, by overcoming problems inherent in single element ultrasound to track coherent speckle motion during deformation. To test these methods, a 50 MHz elasticity microscope was constructed. This system was tested by imaging various tissue mimicking phantoms including: a homogeneous phantom, a phantom with several hundred micron thick layers of different stiffness, the cross-section of a hard cylindrical inclusion with known diameter of 265 μ\mum, and hard spherical microcarrier beads (250 μ\mum diameter) embedded in a soft gelatin phantom. Measurements from the homogeneous and cylindrical inclusion phantoms were compared to finite element simulations of internal deformation to verify experimental techniques. Measurements from multi-region phantoms were used to calculate the resolution of a normal axial strain image from the transition between regions (better than 90 μ\mum axial spatial resolution). Tissue engineering is one of many areas that can benefit from high resolution elasticity imaging. The resolution of the current experimental system is sufficient to detect different tissue layers, caused by cell growth and matrix development. Results from the layered phantom are compared to experimental results from tissue engineered smooth muscle, grown from cultured cells and synthetic matrices. Typically, cell growth on the interior region of the scaffolding or matrix is limited by nutrient delivery, resulting in a layered structure difficult to image with standard ultrasound techniques. Elasticity micrographs clearly differentiate viable cell layers from synthetic matrix and necrotic cells. Histological differences are confirmed between tissue engineered smooth muscle grown on biodegradable matrix and a cultured matrix without seeded cells. These experiments exemplify the potential of high frequency ultrasound for elasticity microscopy. This research should serve as a cornerstone, allowing others to see the advantages of high resolution elasticity imaging and apply it to their particular needs.Ph.D.Applied SciencesBiomedical engineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/130685/2/9811056.pd

    Human monocyte-endothelial cell interaction in vitro.

    No full text
    corecore